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With the rapid growth and the increasing complexity of network infrastructures and the evolution of attacks,
identifying and preventing network abuses is getting more and more strategic to ensure an adequate degree of
protection from both external and internal menaces. In this scenario many techniques are emerging for
inspecting network traffic and discriminating between anomalous and normal behaviors to detect undesired or
suspicious activities. Unfortunately, the concept of normal or abnormal network behavior depends on several
factors and its recognition requires the availability of a model aiming at characterizing current behavior, based
on a statistical idealization of past events. There are two main challenges when generating the training data
needed for effective modeling. First, network traffic is very complex and unpredictable, and second, the model
is subject to changes over time, since anomalies are continuously evolving. As attack techniques and patterns
change, previously gained information about how to tell them apart from normal traffic may be no longer valid.
Thus, a desirable characteristic of an effective model for network anomaly detection is its ability to adapt to
change and to generalize its behavior to multiple different network environments. In other words, a self-
learning system is needed. This suggests the adoption of machine learning techniques to implement semi-
supervised anomaly detection systems where the classifier is trained with “normal” traffic data only, so that
knowledge about anomalous behaviors can be constructed and evolve in a dynamic way. For this purpose we
explored the effectiveness of a detection approach based on machine learning, using the Discriminative
Restricted Boltzmann Machine to combine the expressive power of generative models with good classification
accuracy capabilities to infer part of its knowledge from incomplete training data.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The main goal of a network anomaly detection system is to
discriminate the occurrence of hostile activities from the normal
network traffic, and such analysis must be accomplished in a
sufficiently flexible and effective way to keep up with the continu-
ously evolving world of cybersecurity where new, previously
unknown, anomalies can continuously emerge over time. In doing
this, it must either try to model any kind of attack or anomalous
event that can affect the network (there are thousands of known
ones) or simply construct a sufficiently general model describing the
normal traffic.

Such model is usually built on the basis of training data, and used
in classifying previously unseen or suspicious events. Classification is
the fundamental task in unattended detection, by which the system
“learns” to automatically recognize complex traffic patterns, to
distinguish between different events based on the corresponding
patterns, and to make “intelligent” decisions. Specific machine learn-
ing techniques, such as Neural Networks or Support Vector Machines
ll rights reserved.
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can be used to develop a generalization capability from training data
needed to correctly classify future data as normal or abnormal. These
resulting approaches can be categorized as generative or discrimina-
tive. A generative approach builds a model solely based on normal
training examples and evaluates each testing case to see how well it
fits the model. A discriminative approach, on the other hand,
attempts to learn the distinction between the normal and abnormal
classes. Thus, based on the characteristics of training data used to
build the model, anomaly detection can be divided into three broad
classes [1]:
�

wit
Supervised anomaly detection: In this class, a training set
containing labeled instances for both the normal and anom-
alous class is available.
�
 Semi-supervised anomaly detection: The training here only
contains instances for the normal class. Anything that cannot
be characterized as normal is thus marked as anomalous.
�
 Unsupervised anomaly detection: No training set is available nor
is it needed.

Obviously, the quality of classification crucially depends on the
accurateness and comprehensiveness of the model and hence of
h the restricted Boltzmann machine, Neurocomputing (2013),
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the training data on which the model is built. If a complete set of
pre-classified or “labeled” categories of normal (or anomalous)
behavior is included in the training set (which can be difficult to
achieve and even harder to maintain), all the corresponding (or
“matching”) instances will be correctly classified. But if some of
such categories are not described in the training data, the
corresponding instances may be classified incorrectly. In particu-
lar, anomalous events are harder to describe, partly because of
their negative definition (a-nomalous literally means non-normal).
Anomalous events both appear less frequently than normal events
and embrace a huge variety of aspects. In fact, one technique for
producing a labeled training set consists in creating anomalies
artificially, injecting anomalous events in a stream containing
normal data. But the description of anomalies obtained in such a
way is forcibly limited to the scope and characteristics of the
artificial anomalies used. Labeled anomalous data gathered from
operational, “real-world” networks are not readily available, for a
number of reasons, including the sheer amount of effort needed to
produce such data, and the reluctance of network administrators
to divulge data that could compromise the privacy of their clients
or exfiltrate privileged information about the internal structure of
their networks. The immense amount of data to be potentially
examined, combined with their complexity and with the level of
expert knowledge that would be needed for the analysis is a
strong motivator for making the training process as independent
as possible from the availability of labeled anomalous data.
Furthermore, these data are generated mainly through human
intervention, as soon as the community becomes aware of a new
menace and detailed information about the attack dynamics and
behavior becomes available. This may require a not negligible time
that is clearly unacceptable when real-time or timely response to
anomalies is strictly necessary. Consequently, anomaly detection
systems should avoid being limited by the knowledge of any
predefined set of anomalies and should be able to flexibly
recognize/classify any unknown event affecting the network
operations according to a self-learning semi-supervised or better
unsupervised detection approach, so that the knowledge of traffic
behavior on which the model is based can be progressively
constructed and dynamically change/evolve over time. However,
building and training in situ such a generative self-learning model
is a lengthy and costly process. Even when the semi-supervised
model is used, the overall result will depend on the completeness
of the training data, since it is difficult to represent all the features
that normal behavior can have. Thus, in this work we focus on
semi-supervised anomaly detection, with a perspective aiming at
investigating whether normal traffic behavior (and, conversely,
anomalous behavior) shares some inherent similarity that we can
use to characterize it. The purpose of this analysis is not to
concentrate on a near real-time intrusion detection and reaction
system but, in a medium-term perspective, to work towards a
better and more adequate description of network traffic, also
aiming at being as adaptive as possible. The tool which has been
selected for this analysis is the Discriminative Restricted Boltz-
mann Machine, a network of stochastic neurons behaving accord-
ing to an energy-based model. These networks couple the ability
to express much of the variability of data, given by generative
models, with the good classification accuracy derived from dis-
criminative classifiers. The main advantages of this approach are
that in line of principle it is not restricted to any specific
environment, or a priori knowledge base, and that it can enable
the detection of any type of unknown anomalous events, being
effective in coping with the so-called zero-day attacks.

In Section 2, related work is reviewed. An introductory sum-
mary of classical neural networks, energy-based models, and
Boltzmann Machines is the subject of Section 3. The proposed
model and its assumptions are detailed in Section 4. Sections 5 and
Please cite this article as: U. Fiore, et al., Network anomaly detection
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6 are dedicated to the description of the experiments and the
discussion of their results. Section 7 contains some concluding
remarks and directions for future research.
2. Related work

Anomaly detection in computer networks is a long-established
area, with more than 40 years of evolution [2] and contributions
that have explored many approaches [1,3]. In a wider perspective,
other researchers have considered the time-dependent connection
between events, focusing on the casual relationship between an
event and its consequences. For example, the problem of correlat-
ing events from different sources to isolate the root cause has been
investigated in [4]. The study of effects produced by hidden
dynamics has been the object of works based on nonlinear
analysis, first targeted to traffic classification [5] and then focused
on the specific issue of network anomaly detection [6]. Feature-
modeling anomaly detection techniques such as FRaC [7] focus
instead on the linkage between individual features and attempt to
build predictive models for each feature, based on the others.
Features that deviate from this prediction indicate an anomaly.
Semi-supervised learning has received attention by the research
community recently. Mao et al. [8] have proposed a co-training
framework based on multi-view data, semi-supervised learning
and active learning. Their method requires user intervention. Chen
et al. [9] evaluated the application of spectral graph transduction
and Gauss random fields to the detection of unknown attacks.
Besides classification, they also proposed a semi-supervised
method for clustering. An unsupervised clustering algorithm based
on competitive learning neural network is described in [10],
where instability is reduced by means of a reward-punishment
update rule.
3. Background

3.1. Anomaly detection

From a theoretical point of view our network anomaly detec-
tion problem can be formulated as follows [11].

A collection of traffic data measurements is described by a
scalar time series fxtgTt ¼ 1 governed by a probability distribution
pð � Þ. Although all these measurements are associated to the
occurrence of specific events within the event space S, the
correspondence between them may not be known in advance.
We are interested in partitioning the event space S into two sub-
spaces corresponding to the normal and the anomalous network
traffic conditions. Also, we need to infer the membership of a
particular event in one of the above subspaces starting from the
corresponding time series values. To accomplish this task, since
the probability distribution p describing the behavior of the time
series is unknown, we can use a mechanism enabling the recon-
struction of its volumetric representation from the collection
fxtgTt ¼ 1. A general approach to the problem of identifying this
representation is based on building a Minimum Volume Set (MVS)
characterized by a probability mass 0oβo1 associated to the
distribution p for a volume measure μ [12], that is:

Gn

β ¼ arg minfμðGÞ : pðGÞ≥β; G measurableg ð1Þ

In the most of the common cases μ can be chosen to be the
Lebesgue measure, although such technique extend easily to other
measures. The parameter β can be chosen by the user to reflect a
desired false alarm rate of 1−β.

These minimum volumes summarize the regions of greatest
probability mass of the distribution p, and are useful for detecting
with the restricted Boltzmann machine, Neurocomputing (2013),
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Fig. 1. Minimum volume sets example with β¼ 0:9.
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anomalies and constructing confidence regions. Hence, online
evaluation of MVSs satisfying Eq. (1) inherently allows the identi-
fication of the highest density regions where the mass of p is
concentrated. All the points falling outside these regions and the
associated events can be declared as anomalous. It can be
observed that, if p is a multivariate Gaussian distribution and μ
is the Lebesgue measure, then the MVSs are represented as
ellipsoids (see Fig. 1).

The most common available methods for estimating G come
from the use of self-learning systems, whose fundamental solu-
tions can be found in the world of neural networks.

3.2. Neural network-based learning models

In many problems of practical interest, the entities to be
modeled are complex, with statistical regularities, characteristics,
and interactions between them. When modeling such a system as
a network of interconnected units, this complexity reflects, in turn,
into an intricate mesh of relationships between units. These units
can be arranged in a few layers (even one) with many units, or in
multiple smaller layers. Theoretical results suggest [13] that
functions admitting a compact representation in an architecture
with a given number of layers would require a very large number
of units in shallower architectures. However, finding the appro-
priate values for the parameters in these architectures is far more
challenging than in the single-layer case, because there is no
information about the expected behavior of intermediate layers
[14]. In classical neural networks, training algorithms akin to back-
propagation only try to model the dependence of the output from
the input. Restricted Boltzmann Machines (RBMs), instead, are
networks of stochastic neurons that can be trained in a greedy
fashion. Deep Belief Networks [15,14] are obtained by stacking
RBMs on one another so that the input to one layer is given by the
hidden units of the adjacent layer, as if they were data, and adding
a last discriminative layer. A hybrid system based on a combina-
tion of Support Vector Machines (SVMs) and DBNs has been
proposed [16], with a primary focus on feature reduction.
Fig. 2. A typical three-layer network, with five inputs, eight hidden units, and two
outputs.
3.2.1. Classical neural networks
The term “neural network” has its origins in attempts to find

mathematical representations of information processing in biolo-
gical systems [17]. Modeling cognitive processes is at the basis of
building intelligent information systems capable, to an extent, of
activities such as analysis, reasoning, interpretation, and forecast-
ing [18].
Please cite this article as: U. Fiore, et al., Network anomaly detection
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Three dimensions are typically needed to describe a neural
network:
�

wit
Architecture: Specifies what variables are involved in the net-
work and their topological relationships, for example, the
variables involved in a neural network might be the weights
of the connections between the neurons, along with the
activities of the neurons.
�
 Activity rule: Most neural network models have short time-
scale dynamics: local rules define how the activities of the
neurons change in response to each other. Typically the activity
rule depends on the weights (the parameters) in the network.
�
 Learning rule: The learning rule specifies the way in which the
neural network's weights change with time. This learning is
usually viewed as taking place on a longer time scale than the
time scale of the dynamics under the activity rule. Usually the
learning rule will depend on the activities of the neurons. It
may also depend on target values supplied by a teacher and on
the current value of the weights.

The multilayer perceptron is perhaps the simplest specific class
of neural network, yet it has proven to be of great practical value.
A multilayer feedforward network consists of a set of neurons that
are logically arranged in layers. There are at least two layers, the
input and output ones. The outputs (activations) of neurons in the
input layer are determined by the network's input. Usually, one or
more hidden layers are located between the input and output
layers. Data flow in one direction (hence the term feedforward):
from the outputs of the previous layer to the inputs of the next
layer, so the output of the network is a function of its inputs. The
output of such a network can be computed in a single determi-
nistic pass. Every single neuron, represented in Fig. 2 as a circle,
has n inputs x¼ ðx1;…; xnÞ, plus another dummy input always
valued at 1, acting as a bias b. Every neuron is characterized by n
weightsw¼ ðw1;…;wnÞ and an activation function f that is applied
to the weighted sum of the inputs, yielding as result:

f ∑
n

i ¼ 1
wi � xi þ b

 !
¼ f ðwTx þ bÞ:

The operational behavior of the network is principally deter-
mined by the weights: the exact shape of the activation function
only affects the expressive power of the network in a minor way;
instead it influences the convergence of the training procedure.
The simplest form of nontrivial activation function is the threshold
function fa¼1 if x≥a and 0 otherwise. In general, a differentiable
activation function is preferred. A common family of activation
functions is the sigmoid functions. An example of sigmoid function
is the logistic sigmoid:

sigmðxÞ ¼ 1
1þ e−x
h the restricted Boltzmann machine, Neurocomputing (2013),
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1 Z comes from the German word Zustandssumme, sum over states.
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whose derivative is always positive and given by the logistic
equation

d
dx

f ðxÞ ¼ f ðxÞ � ð1−f ðxÞÞ

Other examples of sigmoid functions are the hyperbolic tangent
and the scaled arctangent. Clearly none of these sigmoid functions
can reach their respective theoretical bounds, so usually one
assumes that a neuron is activated when its output value is about
0.9 and that a neuron is turned off when its output is about 0.1. It is
reasonable, instead, to use the extremes as inputs to the network. In
the field of neural networks there are very few theoretical strict
rules on how to define the architecture of the network. One of these
says that all problems that can be solved by a neural network do not
require more than two layers. In practice, for the majority of the
problems one hidden layer of hidden neurons is enough.

A good method for the determination of the hidden layers is to
start with a network with a single hidden and few hidden neurons.
If the networks perform poorly, increase the number of hidden
neurons. When the number of neurons gets large and the perfor-
mances of the network do not improve, it can be more productive
to introduce a new hidden layer and reduce the total number of
hidden neurons. Choosing the right number of neurons for a hidden
layer is also not trivial. If there are too few neurons, the network has
not enough resources to learn the general features of the training
population. Using too many neurons increases the training time,
and this not necessarily yields a corresponding increase of perfor-
mance. In fact, too many neurons can cause over-fitting: the
network can capture a large quantity of information not only about
important general features, but also specific features of the training
set. In passing, one should note that reasoning about the choice of a
sensible number of hidden neurons heavily depends on the task the
network is designed for: practical rules valid in discriminative
machine learning may be inadequate in the generative case [19].
In the first context, a training sample imposes on the parameters a
constraint given by the number of bits needed to specify the label.
As labels typically carry a few bits of information, using more
parameters than training samples will typically cause severe over-
fitting. In generative models, what matters is the entire sample.
Thus, it is the information carried by a sample that determines how
much constraint is added on the parameters by each training
sample. Redundancy in the entire training set will reduce the total
amount of constraint, still this can be much larger than the number
of bits it takes to identify a label.

Basically, there are two ways to train a neural network. The most
common is supervised training. A training set of sample data that
completely specifies the inputs, along with the desired output is
needed. Once the training set is defined, it is presented to the network,
one sample at a time. The error between the desired output and the
network's output is evaluated and the weights of the network are
updated in order to reduce the error. Each cycle through the training
set updating the weights is called an epoch. This cycle is repeated until
the wanted precision is attained or a predetermined number of
iterations is reached. The other training method is unsupervised
training. As in supervised training, there is a training set, but in this
case the desired outputs are not needed. The process of training the
network is to let it discover the main features of the training set, and
using these features, to group the inputs into classes that the network
finds distinct. A hybrid, training method, called Reinforcement Learn-
ing is unsupervised in that the desired outputs are unknown and, at
the same time, it is supervised in that when the network evaluates an
output, it is told whether its response is good or bad.

The most common training algorithm is the back-propagation
of errors [20]. The name comes from the fact that output-layer
errors are back-propagated through the network. Its most basic
form is a gradient descent algorithm. After an initial random
Please cite this article as: U. Fiore, et al., Network anomaly detection
http://dx.doi.org/10.1016/j.neucom.2012.11.050i
assignment of weights, the gradient of the error with respect to
weights is computed, and a step is taken to reduce the error. The
length of the step, called learning rate, will directly influence the
convergence of the algorithm. Too small a step slows convergence
down, whereas with a larger step there will be wild jumps and the
algorithm may never converge. In addition, the training algorithm
should avoid getting stuck in local minima.

It has been observed [21] that standard gradient descent is not a
good performer when the number of hidden layer gets high. On the
other hand, networks with few hidden layers have less expressive
power than networks that have many of these layers [13]. In the same
study [21], standard activation functions such as sigmoids and tanh are
shown to be outperformed by the softsign function:

f ðxÞ ¼ x
1þ jxj :

The softsign has the same range of the tanh and is similar to it,
but has a softer asymptotic behavior.

3.2.2. Boltzmann machine
General (unrestricted) Boltzmann machines belong to the class

of stochastic Energy-Based Models. In energy-based models [13],
an energy is associated to each configuration (state) of the system
under analysis. To describe such system state, observable variables
v¼ ðv1;…; vnÞ are usually complemented by non-observable (hid-
den) variables h¼ ðh1;…;hmÞ. Hidden variables participate in
determining the evolution of the system over time, according to
a set of (unknown) differential equations, but remain impermeable
to observation. The relation between visible and latent variables is
bidirectional, i.e., the former are influenced by the latter, but also
influence them. Pictorially, this is represented with a graph similar
to that in Fig. 2. The probability of a state Pðv;hÞ depends only on
the energy of that state Eðv;hÞ, with a Boltzmann distribution
function:

Pðv;hÞ ¼ expð−Eðv;hÞÞ
∑v;hexpð−Eðv;hÞÞ

ð2Þ

where the normalization factor at the denominator is usually
denoted by Z (this comes from Statistical Mechanics, where Z is
termed Partition Function1), i.e.,

Z ¼ ∑
v;h

expð−Eðv;hÞÞ:

Pðv;hÞ is the joint probability of the visible and the hidden
variables, that is, the probability of every possible pair of a vector
of visible units and a vector of hidden units. Since only the v are
actually observed, we are interested in the marginal distribution
PðvÞ summing over all configurations of the latent variables:

PðvÞ ¼∑
h
Pðv;hÞ ¼∑

h

expð−Eðv;hÞÞ
Z

: ð3Þ

Observing that

Z ¼∑
x;h
expð−Eðx;hÞÞ ¼∑

x
∑
h
expð−Eðx;hÞÞ;

Eq. (3) can be transformed into a form similar to Eq. (2) by
introducing the notion of Free Energy F :

expð−F ðxÞ ¼∑
h
expð−Eðx;hÞÞ; ð4Þ

so that

PðxÞ ¼ expð−F ðxÞÞ
∑xexpð−F ðxÞÞ ¼

∑xexpð−F ðxÞÞ
Z

:

with the restricted Boltzmann machine, Neurocomputing (2013),
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To minimize the negative data log-likelihood, its gradient with
respect to the parameters of the model, θ, must be considered:

−
∂ log PðvÞ

∂θ
¼∑

h
Pðh vÞ ∂Eðv;hÞ

∂θ
−∑
v;h

Pðv;hÞ ∂Eðv;hÞ
∂θ

�����
¼ E

∂Eðv;hÞ
∂θ

���v�−E ∂Eðv;hÞ
∂θ

� ��

where E denotes the expectation operator. To overcome the
difficulty of calculating this gradient analytically (the expectation
involves all possible input configurations), Restricted Boltzmann
Machines(RBMs) were introduced.

In RBMs, no intra-layer links are allowed [19]. A hidden variable
still does influence visible variables (and vice versa) but is not
allowed to depend on the value of another hidden variable. The
same is true for the visible variables. An RBM can be represented
by a network of stochastic binary neurons, whose states are
observable, which are connected to stochastic, unobservable,
hidden units. Connections are bidirectional. Neurons have two
states and will be activated with a probability which is a smooth
function. The energy function of a RBM is

Eðv;hÞ ¼ −hTWv−bTv−cTh; ð5Þ
where hT is the transpose of h, and b and c are the biases,
respectively, of the visible and the hidden units. The structure of a
RBM, with no intra-layer dependence, allows us to write

pðvjhÞ ¼∏
i
pðvijhÞ and pðhjvÞ ¼∏

j
pðhjjvÞ: ð6Þ

The most commonly used case involves binary units. However,
RBMs can be generalized to unrestricted real-valued inputs. With
binary units, Eqs. (6) can be rewritten as

Pðvi ¼ 1jhÞ ¼ sigm bi þ∑
j
wj;ihj

 !

ptPðhj ¼ 1jvÞ ¼ sigm ci þ∑
i
wj;ivj

 !
:

This results in a parametric model of the joint distribution
between hidden variables and the observable inputs. The para-
meters are Θ¼ ðW;b; cÞ. Training means finding the values of these
parameters that correspond to desirable values for the energy,
usually such that the energy is minimized. Thus, a possible
training strategy may aim at minimizing the log-likelihood of
the training data that is estimating its gradient with respect to the
model parameters. While an exact computation is intractable, the
gradient can be estimated using a method called contrastive
divergence (CD). CD replaces the expectation with a sample taken
over a limited number of Gibbs sampling steps. Samples of p(v)
can be obtained by running a Markov chain to convergence, by
using Gibbs sampling as the transition operator. Visible units are
sampled simultaneously, given fixed values of the hidden units
(recall that visible units are conditionally independent).

Similarly, hidden units are sampled simultaneously, given the
visible variables. At iteration i, the hidden units hðiÞ are sampled, i.
e., chosen at random with probability sigmðWvði−1Þ þ cÞ. This is
called positive phase, because it decreases the energy (increases
the probability) of training data. Then, the network is allowed to
set the values of the visible variables. This also corresponds to
random sampling from the distribution of pðvjhði−1Þ and is called
negative phase, because it increases the energy (decreases the
probability) of samples generated by the model. In theory, each
parameter update in the learning process would require waiting
for convergence of one Markov chain. In practice, after initializing
the chain without using a random value but with a training
Please cite this article as: U. Fiore, et al., Network anomaly detection
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example, even a single step of Gibbs sampling has been shown
to yield good results.

Training is obtained by cycling through the training data and
updating the parameters with the values obtained by CD multi-
plied by the learning rate λ.

3.2.3. Discriminative restricted Boltzmann machines
The discriminative RBM is a promising tool in statistical

machine learning [22]. In contrast to the Restricted Boltzmann
Machine (RBM), which is a generative classifier aimed at produ-
cing a model that describes inputs, capturing as much of their
variational potential as possible, the discriminative RBM aims at
combining the descriptive power with a sharp classification ability.
In order to make an RBM operate in a supervised fashion, we
introduce an additional input containing the targets. The datasets
will thus be structured as sequences of pairs ðv; yÞ comprising an
input vector v and a class y∈f1;…;Cg. It is actually convenient to
“vectorize” the class, introducing a vector y whose j-th component
is δj;C , using the Kronecker delta.2

In a DRBM, the joint distribution of Eq. (2) becomes then

pðv;h; yÞ∝expð−Eðv;h; yÞÞ
and the energy of Eq. (5) becomes

Eðv;h; yÞ ¼−hTWv−bTv−cTh−dTy−hTUy:

What matters most in a classification task is not a correct joint
distribution, but the accuracy for classification. In Discriminative
RBMs, we optimize directly pðyjvÞ instead of pðy; vÞ. The loss
function will thus be

ℓdiscr ¼ ∑
NT

i ¼ 1
log pðyðiÞjvðiÞÞ ð7Þ

and the gradient can be computed exactly

∂ log pðyijviÞ
∂θ

¼∑
j
sigmðoy;jðviÞÞ

∂oy;jðviÞ
∂θ

−∑
j;yn

sigmðoyn ;jðviÞÞ
∂oyn ;jðviÞ

∂θ

where oy;jðvÞ ¼ cj þ ∑kWj;kvk þ Uy;j.
As it can be seen, DRBMs have many things in common with

feedforward neural networks. The added value of an energy-based
model, such as the one at the basis of RBMs, is that it introduces
generative capabilities in an explicit, controllable, way [22].

Whereas the use of binary variables has been previously assumed,
RBMs can easily accommodate different variables. For example, units
that can assume one state out of K distinct states are dealt with
softmax units, whose probability of activation is

Pj ¼
exj

∑K
i ¼ 1e

xi
4. DRBM for semi-supervised anomaly detection

Even when we are able to observe anomalous data, it is often
difficult or somewhat impossible to identify the anomalous train-
ing samples a priori. In other words, we must be able to detect
anomalies without knowing what they look like. In semi-
supervised anomaly detection systems, the classifier is trained
with data in the normal class only. In a sense, this presents an
interesting analogy with the self-model of the human immune
system [23, Chapter 7]. The immune system has indeed inspired a
rich line of research in network security (see, for example, [24,25]).
To be effective, the immune defenses should be capable to attack
with the restricted Boltzmann machine, Neurocomputing (2013),
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foreign cells. At the same time, attacking all cells indiscriminately
would mean bringing harm exactly to the organism (the self)
which the immune system is intended to protect (as it happens in
autoimmune diseases). Through processes known as positive and
negative selection, T-cells lymphocytes are selected in a gland
known as thymus so that they react to proteins which are found
on all cells of the body (so that body cells are not felt as “too
foreign”), but not react too much as to attack them (hence acting
against the organism itself). Anything that is not known (not
corresponding to the image of self) is labeled as anomalous.
Naturally, this does not mean that everything not matching with
the model is actually anomalous. Besides the effects of the
dynamic, adaptive nature of the network traffic (and of biological
systems), the possibility that the model does not completely
describe all the instance of normal behavior (a task that can be
overwhelmingly difficult and lengthy) should be considered. This
approach focuses on understanding the process generating the
traffic data, and is very useful to ease the construction of the
model of normal or anomalous behavior, since it allows the system
to learn about the occurrence of a specific phenomenon via
inductive inference based on observing the empirical data that
represent incomplete information about the phenomenon itself.

Even though training data includes only normal events, and
thus any deviation from such “normality” would trigger an alert,
the overall performance of classifiers in this group would not
necessarily be remarkable. In fact, the very notion of normality is
vague in itself and it is hard to model all the facets that normality
can have regardless of the effort that can be put into making the
collection of training data as extensive and comprehensive as
possible, it is perfectly reasonable that many instances belonging
to the normal class show distinctive features that separate them
from those found in the training set and thus are flagged as
anomalous. Thus, a high number of classification errors can be
expected of these systems.

Remark 1. In semi-supervised anomaly detection, classification
errors most likely are normal events incorrectly classified as
anomalous, i.e., false positives.

It should be noted that false positives, although less harmful
than false negatives, are undesirable in the context of anomaly
detection. Events flagged as anomalous should be analyzed more
closely (perhaps by humans), thus absorbing inordinate amount of
resources. Starting from these considerations, some questions
immediately arise. Can we do better? Is there some form of
“inherent” similarity between all normal traffic? Do all normal
traffic flows share some common value ranges for a significant set
of features, as well as correlation and sequencing between them?
Notably, a recent paper confirms that anomalous traffic has
intrinsic properties regarding self-similarity which are different
from those of normal traffic [26]. The idea that we intend to test is
whether there is a deep similarity between normal behaviors, so
that a learning model with high expressive power can describe all
the nuisances of normal traffic when comparing it against unseen
anomalous traffic. The DRBM, which combines the expressive
power of generative models with good classification accuracy,
has been selected as a tool to test this hypothesis.
4.1. Assumptions

The following assumptions are taken as valid hereinafter:
�

3 http://www.sigkdd.org/kddcup/index.php?section=1999

P
h

No packet payload is available. There are many reasons for that:
to begin with, some data sources that can likely be used for
the purpose of this analysis natively do not contain any pay-
load. Typical examples include NetFlow records and Network
lease cite this article as: U. Fiore, et al., Network anomaly detection wit
ttp://dx.doi.org/10.1016/j.neucom.2012.11.050i
Address and Port Translation (NAPT) log files [27]. In addition,
even if the data source is a packet capture, data can be limited
to protocol headers or be truncated to a few bytes. This may
happen for privacy concerns (users are very sensitive about the
content of their traffic being captured) or simply for the sake of
saving storage space.
�
 It is anticipated that the parameters characterizing a baseline
may change over a sufficient long time. Thus, training should be
repeated at regular intervals. This theme will be the object of
future research and will not be further expanded here.

5. Experiments

A set of experiments was performed by testing the trained network
against the processed data from two real-world traces, each one
describing all the traffic involving a specific workstation for 24 h.
Traffic on one host was normal, while the other one had been infected
by a bot [29]. The bot communicated via IRC with other hosts in its
botnet. All this traffic was defined as anomalous. This had considerable
implications, which will be discussed later. Anomalous connections
were flagged manually. The “clean” dataset contains 12,056 connec-
tions, while of the 12,317 connection in the second dataset, 4182 were
anomalous. The first experiment in this set had the goal of testing the
accuracy of the DRBM to recognize anomalous traffic on real data.

Another experiment involved the “cross” use of training and
test data: the DRBM was trained with KDD data (using the 10%
training KDD dataset), and tested against real data. All tests were
repeated 10 times, randomizing the order of the test data.

The KDD '99 dataset3 is the data set used for the Third International
Knowledge Discovery and Data Mining Tools Competition, which was
held in conjunction with the Fifth International Conference on Knowl-
edge Discovery and Data Mining (KDD '99). The raw training data
amounts to about 4 GB of compressed packet capture data from seven
weeks of network traffic. This was processed into 4,898,431 connec-
tion records, with a set of 41 features describing various aspects.
Similarly, the two weeks of test data yielded 2,984,154 (unlabeled)
connection records. A smaller training dataset, containing 10% of the
connections (but representative of the anomalies), is also available
(Table 1). Each connection is labeled as either normal, or as an attack,
with exactly one specific attack type. Each connection record consists
of about 100 bytes. Attacks fall into four main categories:
(i)
h

DoS: denial-of-service, e.g., SYN flood: the attack objective is
to prevent legitimate users from accessing a service;
(ii)
 R2L: unauthorized access from a remote machine, e.g., guessing
password: the attack objective is to get access to a machine from
outside;
(iii)
 U2R: unauthorized access to local superuser (root) privileges,
e.g., “buffer overflow” attacks: the attack objective is to obtain
elevated privileges;
(iv)
 Probe: reconnaissance and other probing, e.g., port scanning –

the attack objective is to gain information about target host or
networks.
We have to chose how many features must be used for
classification, and how many patterns are needed for each class.
In our experiments, we use only part of the total training data,
namely, those containing “normal” connections. This leads to
97,278 instances.

Remark 2. While the KDD dataset has been used in a substantial
number of research works, it has been heavily criticized [28], as
being excessively “artificial”, in the sense that normal traffic into
the restricted Boltzmann machine, Neurocomputing (2013),
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which anomalies were injected does not resemble real traffic; this
may add an undesired bias to the data, weakening the results
deriving from experiments upon them.

5.1. Features

In order to construct the needed traffic measurement space, we
have to determine a basic set of features describing the traffic
pattern in a specific time interval (the observation epoch). Let F
denote the feature space describing the network traffic. We use a
multi-dimensional feature vector f∈F built from the fundamental
traffic observations (e.g., the overall byte rate or the average
packet inter-arrival time) by computing on each epoch some
traffic behavior discriminators.

The number of traffic features that can be simultaneously
evaluated introduces great control granularity in the detection
process by adding multiple points of observation, and hence new
dimensions in the decision space that can ease correlation and
inference activities in the DRBM-based binary classification pro-
cess. Having multiple different observations associated to the
individual traffic components may also be helpful in spotting
and describing the nature and behavior of the observed anomalous
phenomena (e.g., protocols affected, transport facilities used,
traffic volumes distribution). This last issue can be of fundamental
importance in the development of countermeasures or reaction
strategies that can be a very interesting subject for further
research.

In the experiments, 28 out of 41 features were used, namely,
those related to network traffic. These features are listed in
Table 2.

Most features take a value in a numerical range, and are
indicated as “continuous”. Other features are nominal, i.e., they
assume one value from a discrete set of possible values. These
features are tagged as “discrete”. Note that some features are
derived, i.e., calculated starting from the values of other features.
Features can be lumped into three groups: the first group (lines 1–
7 of Table 2) includes basic features of individual TCP connections;
the second group (lines 8–18 of Table 2) includes time-based
features computed over a two-second interval a set of counters for
connection having specific characteristics; the third group (lines
19–28 of Table 2) includes derived host-based features, which
were computed using, instead of a time window, a window of 100
connections to the same host. Within the second group, the “same
host” features examine only the connections in the past 2 s that
have the same destination host as the current connection, and
calculate statistics related to protocol, service or behavior. The
similar “same service” features examine only the connections in
the past 2 s that have the same service as the current connection.

5.2. Preprocessing

A preprocessing step was needed to transform the packet traces
into a connection-based format such as the one used in the KDD
Table 1
KDD 1999 data set.

Class Training set 10% Training set

Normal 972,781 97,278
Probe 41,102 4107
DoS 3,883,370 391,458
R2L 1126 1126
U2R 52 52

Total 4,898,431 49,4021

Please cite this article as: U. Fiore, et al., Network anomaly detection
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dataset. For this purpose, the bro IDS4 has been used, together
with a properly crafted trace parsing tool. bro is a powerful
network monitoring framework, originally developed by Vern
Paxson at the International Computer Science Institute and the
National Center for Supercomputing Applications, that, while
focusing on network security issues, provides a comprehensive
platform for more general network traffic analysis. After proces-
sing the traffic traces with bro, a further step, encoding the
nominal traffic features with arbitrary numeric values (tokens),
is performed. For example, the protocol_type (e.g., tcp) is
encoded by using the IANA-assigned protocol numbers, and so on.

A forest structure has been used in parsing the connection data
from bro to make the preprocessing phase more efficient. During
the tokenization, two search trees are built, structured according
to the scheme reported in Fig. 3. There are three types of node:
source-Ip, destination-Ip, destination-Port. Each path within a tree
identifies a connection. A set of counters C ¼ fc1;…cng (with
n¼ jCj) is associated to each node: for instance, if there are
5 connections from the source IP 192.168.0.1, the connec-

tions counter in the 192.168.0.1-node will have value 5. It is
trivial to note that the sum of the counters ci associated to the
children of a particular node is equal to the corresponding counter
ci on the node itself. When a new connection is found in the traffic
trace, the respective path is added, but if the first part of the path
is already in the tree, only the second one is added to it, and the
counters of the first one are simply incremented. In this way, the
value of the traffic features for each connection can be computed
in a straightforward way.

For instance, the feature count is the number of connections to
the same host (during the current connection in the past 2 s), so to
compute this feature, the only thing to do is to read the value of
the specific counter in the destination node of the path from
source to destination. Another forest with a specular structure (i.e.,
with paths going from nodes describing the destination to nodes
describing the source) is needed, because most features, to be
computed, need the destination-IP as the search base. For instance
if we want to know the number of connections from a specific
host, say X, to a destination Y, using the destination-IP tree, the
only thing to do is to read the associated counter value in the node
X, chosen between the sons of Y. With this approach, it is possible
to compute all the needed features: some of them are equal to the
values of specific counters in the tree nodes, but other ones can be
easily derived from them, like the percentage of connections
that were reset or the connections with SYN errors (e.g., these
connections will have status S0 in bro).

5.3. Methodology

The success of a classifier meant to be used in practice depends
ultimately on its ability to perform well not only with the data
used for its testing, but most of all with real-world data. Although
a methodologically sound procedure ensures that the classifier is
tested against data it has never seen before (i.e., in the training
phase), there is no guarantee whatsoever that testing data will be
representative of, and resemble closely, real-world data. Such data
surely are not available at the time of testing. On the other hand,
when using a portion of the training data as a validation dataset to
verify and refine the selection of model hyper-parameters, training
data could “leak” some information about the validation conditions
if the partitioning of data into training and validation sets is not
done properly so as to ensure that instances relative to the same
(or very close) conditions go in the same part. Connections
recorded with the same conditions might, in fact, share some
4 http://www.bro-ids.org/
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Fig. 3. Tree-like structure for the efficient computation of features.

Table 2
Features used in the experiments.

No. Feature name Description Data type

1 duration Length (number of seconds) of the connection continuous
2 protocol_type Type of the protocol, e.g., tcp or udp discrete
3 service Network service on the destination, e.g., http or telnet discrete
4 flag Normal or error status of the connection discrete
5 src_bytes Number of data bytes from source to destination continuous
6 dst_bytes Number of data bytes from destination to source continuous
7 land 1 if connection is from/to the same host/port; 0 otherwise discrete

8 wrong_fragment Number of “wrong” fragments continuous
9 urgent Number of urgent packets continuous
10 count Number of connections to the same host as the current connection in the past two seconds continuous
11 srv_count Number of connections to the same service as the current connection in the past two seconds continuous
12 serror_rate % of same-host connections that have “SYN” errors continuous
13 srv_serror_rate % of same-service connections that have “SYN” errors continuous
14 rerror_rate % of same-host connections that have “REJ” errors continuous
15 srv_rerror_rate % of same-service connections that have “REJ” errors continuous
16 same_srv_rate % of same-host connections to the same service continuous
17 diff_srv_rate % of same-host connections to different services continuous
18 srv_diff_host_rate % of same-service connections to different hosts continuous

19 dst_host_count Count of connections having the same destination host continuous
20 dst_host_srv_count Count of connections having the same destination host and using the same service continuous
21 dst_host_same_srv_rate % of connections having the same destination host and using the same service continuous
22 dst_host_diff_srv_rate % of different services on the current host continuous
23 dst_host_same_src_port_rate % of connections to the current host having the same src port continuous
24 dst_host_srv_diff_host_rate % of connections to the same service coming from different hosts continuous
25 dst_host_serror_rate % of connections to the current host that have an S0 error continuous
26 dst_host_srv_serror_rate % of connections to the current host and specified service that have an S0 error continuous
27 dst_host_rerror_rate % of connections to the current host that have an RST error continuous
28 dst_host_srv_rerror_rate % of connections to the current host and specified service that have an RST error continuous
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similarity that might unnoticeably cause over-fitting when two
instances taken in the same day are used both in the training and
validation sets. The classification accuracy would thus be over-
estimated. Connection that are comparable in terms of amount of
data being exchanged might be too similar to one another for the
validation to avoid biasing. Thus, a check that has been added is to
subdivide connections into categories based on data volume, and
to ensure that all the connections belonging to the same category
are used either as training or as validation inputs.

5.4. Evaluation criteria

The performances of a network must be evaluated by testing it
on a different data set than the one on which it was trained. The
relatively large number of parameters involved (all the weights)
means that it is too easy for the network to acquire unique
characteristic of the training set (over-fitting), rather than general-
izing on properties of the population. While the mean square error
is easy to compute, its most obvious disadvantage is that it is a
Please cite this article as: U. Fiore, et al., Network anomaly detection
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purely mathematical construct, which may have little meaning
with respect to the practical task performed by the network. If the
task is to classify a pattern into one of the several categories, the
mean square error tells us nothing about expected frequency of
misclassification. A more important problem with the MSE as a
guide to performance is that it fails to distinguish minor and
serious errors. If the task of the network is to classify cases into
one of the several categories, examining a confusion matrix can be
highly informative. A confusion matrix is a matrix containing as
many rows and columns as there are classes. For every case, its
class is chosen to be that corresponding to the output neuron that
has the maximum activation. The content of the entry at the i-th
row and the j-th column of the confusion matrix is the number of
test cases that truly belong to class i but which were classified into
class j. Ideally, one would obtain a strictly diagonal matrix.
Quantities in off-diagonal positions represent misclassifications.
The principal strength of the confusion matrix is that it clearly
identifies the nature of errors, as well as their quantity. The
experimenter is then free to evaluate the performances of the
with the restricted Boltzmann machine, Neurocomputing (2013),
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network in terms of relative severity of misclassifications. The
evaluation parameters that have been selected are thus:
�

P
h

Accuracy: Is the reliability of the rule, usually represented by
the proportion of correct classifications, although it may be that
some errors are more serious than others, and it may be
important to control the error rate for some key class.
�
 Speed: In some circumstances, the speed of the classifier is a
major issue. A classifier that is 90% accurate may be preferred over
one that is 95% accurate if the former is 100 times faster in testing
(and such differences in time-scales are not uncommon in neural
networks). Such considerations would be even more important
when the number of samples to be processed is very large.
�
 Comprehensibility: If it is a human operator who must apply the
classification procedure, the procedure must be easily under-
stood, else mistakes will be made in applying the rule. It is
important, also, that human operators believe and trust the
system. An oft-quoted example is the Three-Mile Island case,
where the automatic devices correctly recommended a shut-
down, but this recommendation was not acted upon by the
human operators who did not believe that the recommenda-
tion was well founded.
�

Fig. 5. Performance when training on real, testing on real (rr); training on KDD,
testing on real (kr).
Time to learn: Especially in a rapidly changing environment, it may
be necessary to learn a classification rule quickly, or make adjust-
ments to an existing rule in real time. “Quickly” might imply also
that we need only a small number of observations to establish our
rule. In addition, retraining can be performed quickly, and this in
turn allows it to be performed more often, and our results in
Section 6 show that this may very frequently be the case.

5.5. Early stopping

Early stopping is a technique to concentrate training efforts. Typi-
cally it involves partitioning the data set into three parts: training,
validation and testing. Gradient descent on the objective function is
performed with data in the training set. In parallel, the resulting model
is tested against the validation set (not the testing set) to see howwell
it is performing in unseen data. Samples in the validation set can be
used during training, because they would not be included in the
testing set. The training-validation partitioning can also be done in a
similar way to that done in n-fold cross validation. The reconstruction
error should normally decay steeply at the beginning of training, and
then “stabilize” as the effects of noise in the gradient calculations begin
to appear. Thus, when accuracy ceases to improve, or starts dropping,
optimization is stopped.

5.6. Choice of hyper-parameters

In the training phase of Experiment 1, normal traffic of the first
real trace was used for training, and traffic from the second trace
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Fig. 4. Free energies for normal (left) and
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for testing. The same testing set has been used in Experiment 2.
However, in Experiment 2, KDD data purified from attacks were
used as training data. Thus, the neural network was allowed to
recognize a set of instances of normal traffic. The learning rate has
been set to 0.1, while the number of training epochs was initially
chosen as 15, trying also 10 and 5. A range of different values were
used for the other hyper-parameters. The values obtained with the
best 10 combinations have been used for the charts.
6. Results

In Fig. 4, the free energy of the RBM is shown for both normal
and anomalous connections in the real data set. As it can be
observed, the free energy of normal connections tends to oscillate
between two intervals. Anomalous behavior, instead, shows two
distinctive characteristics. Its free energy reaches extreme values
(the positive and negative spikes) or it stays very stably in a
narrow interval. The second characteristic can be traced back to
routine communication between the malware and its controlling
nodes. While the free energy for this activity lies in the range of
the free energies associated to normal traffic, values in the specific
interval for anomalous traffic are rarely found in normal traffic.
The spikes are instead associated with actual commands sent out
to the malware agent and to the return of a quantity of data
gathered on the infected PC and sent back to a different (possibly
up the chain of command) node.

The training times were significant. Training in Experiment
1 over 15 epochs took 186.4 h on a HP DL380 G3.

In Fig. 5, the accuracies obtained for the various experiments
are reported. The graphs use boxplot format of Tukey and
Chambers and illustrate the distribution of data. The central box
is bounded by the first and third quartiles, and thus it encloses the
middle 50% of the data. The “whiskers” extend to the minimum
and maximum values. A “+” sign indicates the mean, whereas the
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horizontal line across the box is drawn at the median. Each box is
relative to an experiment. The first (rr) gives the results for the
experiment where the DBRM was trained and tested on the real
data and the rightmost (kr) the experiment where the DBRM was
trained on the KDD dataset and tested on the real data. Recall that
traffic labeled as anomalous contained both “noisy” events that are
noticeable for their characteristics, and “silent” events whose low
volume and frequency makes them harder to detect. This may
explain, in part, the performance in the first experiment. By
comparing the accuracy obtained in Experiments 1 and 2, we
can see the inadequacy of the training on the KDD dataset to be
exported to another dataset. The lower values in the (kr) box
suggest that the use of highly dishomogeneous data for training
and testing decreases the classification performance. This may be
due to over-fitting, but it should be observed that the parameters
of operational networks reflect policies, usage habits, and condi-
tions that have an organizational, regional, and cultural nature.
Thus it is natural to expect that diverse networks tend to exhibit
their own traffic parameters. In addition, the discredit that the
KDD dataset has received from the network security community,
mostly based on the fact that recorded traffic is not representative
of a real network traffic, may explain the result. To improve
classification accuracy, a baseline of normal traffic should defi-
nitely be isolated specifically for the network where the analysis is
to be performed.
7. Conclusions

In this paper, the Discriminative Restricted Boltzmann
Machine, a recently proposed classifier based on the family of
energy-based models, has been applied to network anomaly
detection in a semi-supervised fashion. In particular we were
interested in decoupling the training data from the testing
scenario to assess the generalization abilities of neural networks.
The DRBM has been chosen for its ability to combine generative
power, to capture the inherent aspects of the normal traffic class,
and classification accuracy.

Experiments confirm that, when the classifier is tested in a
network widely different from the one where training data were
taken from, the performance suffers. This suggests the need for
further investigation over the nature of anomalous traffic and the
intrinsic differences with normal traffic.

We can consider that the nonparametric nature of the above
techniques can simultaneously become their main strength and
Achille's heel: a nonparametric method is not based on any known
form or distribution of the sample observations and consequently
it is more robust. At the same time being nonparametric means
that no prior knowledge about anomalous phenomena is available
to be incorporated into the detection model, greatly reducing its
effectiveness. This implies that, since the detection capability is
directly associated with the correctness of the underlying self-
learnt traffic model, if the training set does not accurately
represent the real network normal traffic (i.e., it is not realistic),
we may overestimate or underestimate anomalous phenomena.
Thus, artificial traffic models are error prone and should not be
used for effective semi-supervised training purposes. However,
also real traffic patterns used for characterizing the normal
behavior can be affected by unpredictable network noise phenom-
ena largely due to the randomness and burstiness of the traffic
behavior that can adversely affect the anomaly detection accuracy.
Hence, in future applications, to enhance the performance of the
detection phase we will try to improve the overall “signal-to-noise
ratio” through signal pre-processing by limiting the influence the
“noisy” components and unwanted dependencies according to
some de-noising technique such as nonparametric regression or
Please cite this article as: U. Fiore, et al., Network anomaly detection
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other available ones. Directions for future research also include the
analysis of feature-modeling detectors, combined with the study
of the discriminatory power of single features.
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